Как рассчитать диаметр трубы для бассейна

Водоподготовка закрытого бассейна (пример чаши 34 м3)

Расчет системы водоподготовки скиммерного бассейна (пример бассейна 34 м3)

1. Исходные данные:

— Тип бассейна – рециркуляционный , скиммерный;

— Назначение бассейна – оздоровительный;

b = 6,0м; l = 5,6м; h = 1,0 м — 34 м 3

— Площадь водного зеркала бассейна — 34 м 2

— Температура воды — 26-28 о С

— Температура воздуха в бассейне — 29-31оС

— Относительная влажность воздуха — 60-70%

Расходы воды приведены в таблице водопотребления и водоотведения (табл.1).

Для промывки фильтров используется вода из бассейна, которая возобновляется чистой водой.

Промывка один раз в неделю.

2. Разовое заполнения бассейна

Заполнение в течении 10часов

3. Канализация условно чистого стока

3.2 Слив воды из чаши бассейна

2. Расчет и подбор основных элементов станции очистки воды:

2.1 Заполнение и подпитка чаши бассейна водой

Подача воды производится из трубопровода холодной воды внутренней системы водоснабжения здания, подсоединенного к оборотной системе водоснабжения бассейна.

Рассчитаем диаметр трубопровода, необходимого для заполнения бассейна:

dтр = Корень(4*Sсеч / п) * 10степень3,

Sсеч – площадь живого сечения воды, м 2 .

Sсеч = Vбас/T*3600*v = 34/12*3600*1.5 = 0.0005м2

где Vбас – объем воды в бассейне, м3;

Т – время заполнения бассейна водой, час;

v – скорость движения воды в трубопроводе.

dтр = Корень(4*0,0005/3,14)*10степень3 = 25мм

Принимаем трубопровод ПВХ для заполнения бассейна Dy25 (32х3,0мет. пл.).

Планируемая частота заполнения чаши составит 1-2 раза в год. Качество воды, поступающей на заполнение бассейна, должна соответствовать нормам СанПиН 2.1.4.1074-01 «Питьевая вода» и СанПиН 2.1.4.1188-03.

Потери воды из чаши бассейна на испарение, выплескивание и унос на теле и купальных костюмах в крытых ваннах может определяться по следующей формуле:

Q = 0.0064 х F = 0,0064 х 34 = 0,22 м 3 /сут

где F – площадь зеркала воды бассейна, м 2 .

Компенсация потерь и поддержание постоянного уровня воды в бассейне осуществляется автоматически.

2.2 Определение величины циркуляционного расхода и кратности водообмена.

Период полного водообмена в чаше бассейна согласно СанПиН 2.1.4.1188-03. (таблица №2) не должен превышать 6 часов.

Рассчитаем требуемый рециркуляционный расход:

Qц = Sбас / Sп * q = 34/3 * 1,8 = 20,4 м3/час

Где Qц – расчетный рециркуляционный расход, м3/ч;

Sбас – площадь поверхности воды в бассейне, м2

Sn – площадь поверхности воды на одного посетителя согласно СанПиН 2.1.4.1188-03, м2

q – рециркуляционный расход на каждого посетителя согласно СанПиН 2.1.4.1188-03, м3/ч;

Рециркуляционный расход составит 20,4 м3/ч.

Выбираем фильтровальную установкуKripsol BL760 с верхним клапаном,

22 м3/ч (диаметр фильтра 0,76 м, площадь фильтрации 0,453м2, высота фильтрующего слоя 0,7м.) в количестве 1 шт.

Рассчитаем время полного водообмена:

что удовлетворяет требованиям СанПиН 2.1.4.1188-03.

График работы водоочистительной установки бассейна определяется в ходе пуско-наладочных работ и корректируется в процессе эксплуатации в зависимости от качества воды и теплового режима.

Во время пользования бассейном работа фильтровальной установки, для удаления вносимых загрязнений, должна быть обязательной.

2.3 Водоотведение бассейна.

Отвод воды из ванны бассейна производится с помощью насоса системы водоочистки через донный трап, расположенный в глубокой части бассейна, направленный по трубам ПВХ диаметром 63 мм в разрыв струи канализационного стока. Также используется гаситель напора, монтируемый из отводов трубы ПВХ в месте присоединения к сети канализации. Опорожнение бассейна для технологических нужд производится в систему канализационной сети. Дополнительная очистка воды перед ее сбросом в канализацию не требуется.

Определим количество трапов, необходимых для опорожнения и рециркуляции воды в бассейне. Рассчитаем диаметр трубы, необходимой для этих процессов:

D = 2 * Корень(Sсеч/п) * 10степень3 = 2 * Корень (0,0005/3,14) * 10степень3 = 25мм,

где Sсеч – площадь сечения трубы, м2;

v – скорость воды в трубе, м/с;

Qц – расчетный рециркуляционный расход. м3/ч.

Sсеч = Qц / 3600*v = 20.4 / 3600*1.5 = 0.0004 м2

Принимаем один донный трап с диаметром отводящей трубы 50.

Для возможного полного слива воды из чаши бассейна донный трап располагается с уклоном дна 0,1 к месту его установки.

При очистке фильтра разовый сброс составит:

Qоч = i x Sф x n x t x 60 x 10 -3 = 3 x 0.453 x 1 x 25 x 60 x 10 -3 = 2м 3

где, i – интенсивности промывки, л/с м 2 ;

Sф – площадь фильтрующего слоя, м2;

2.4 Подача, распределение и отвод воды в бассейне.

Подача и перемешивание воды в бассейне осуществляется системой ее распределения. Включает устройство в борту чаши бассейна из 6-и впускных форсунок с диаметром сопла 20 мм. Подвод воды к соплам и равномерное ее распределение между форсунками осуществляется по трубам ПВХ диаметром 50мм.

Отвод воды из чаши осуществляется донным трапом и двумя скимерами. В схеме трубной обвязки предусмотрена возможность регулирования количества забираемой воды с поверхности и со дна ванны бассейна.

2.5 Технологическая схема водоочистки бассейна

В проекте для очистки воды применена оборотная схема. Работа технологической схемы очистки воды основана на применении химической (реагентной) обработки воды с последующей ее очисткой на песчаном фильтре. Эта технология позволяет очищать воду в бассейнах до требуемых показателей, неприхотлива в эксплуатации.

Предлагаемая технологическая схема водоочистки, включает в себя следующие основные элементы:

— фильтр грубой очистки (волосоловка);

— систему распределения и отвода воды в чаше;

-автоматический хлоратор на основе препарата длительного действия Хлорилонг

И дополнительные элементы:

2.5.1 Фильтр грубой очистки (волосоловка)

Фильтр грубой очистки предназначен для извлечения из циркулирующей воды сравнительно крупных загрязнений (волос, волокон и т.п.). В проекте применена волосоловка сетчатого типа, размером ячейки сетки 2х2 мм, конструктивно входящая в состав насосного агрегата.

2.5.2 Фильтровальная установка

Фильтровальная установка предназначена для удаления из воды взвешенных и коллоидных загрязнений.

Принцип действия фильтровальной установки.

Исходная вода из бассейна поступает на фильтр и проходит через слой зернистого фильтрующего материала (песка) в направлении сверху вниз.

Взвешенные примеси, находящиеся в воде, задерживаются фильтрующей загрузкой, а осветленная вода собирается нижней распределительной системой и отводится от фильтра. По мере работы фильтра происходит его загрязнение.

Читайте так же:  Чем можно отпилить трубу отопления

Рабочий цикл заканчивается при достижении установленной разности давлений до и после фильтра (разность давлений определяется в ходе пуско-наладочных работ).

Для промывки фильтра необходимо рычаг 6-ти позиционного переключателя установить в положение «промывка» и включить насос. Промывка производится в течение 15-25 минут, в зависимости от загрязненности песка. После промывки переключатель переводится в положение «промывки клапана» для отвода «первого фильтра» в канализацию в течение 0,5 минут, после чего фильтр переводится в режим «фильтрация». Все переключения 6-ти позиционного переключателя должны производится при выключенном насосе.

Вода для промывки фильтра забирается из бассейна.

Частота промывок зависит от качества воды в бассейне и по опыту аналогичных бассейнов составляет 1-3 раз в неделю.

Отвод промывной воды осуществляется в канализацию.

3. Подогрев воды в бассейне

Поддержание требуемой температуры в бассейне осуществляется подогревом циркуляционной воды в проточном водяном теплообменнике. Работа нагревателя предусмотрена в двух режимах. В режиме эксплуатации (основной режим) и в режиме первоначального нагрева воды в бассейне.

Расчет и подбор водонагревателя воды:

Q = (Vбас * с * (tбас — tхол)) / T + Qк = 34*1,163*23 /24 +4,1 = 42 кВт

Где: Vбас – объем бассейна, м 3 ;

С – удельная теплоемкость воды – 1,163 Вт/кг.

tбас – температура воды в бассейне – 28 о С;

tхол – средняя температура холодной воды из водопровода – 5 о С;

Qкп – компенсация потерь при теплообмене для крытого бассейна – 120 Вт/м 2 ,

Необходимая мощность для нагрева составляет 42 кВт соответственно.

Выбираем теплообменник HF-28, Nтепл=28 кВт, в количестве 2 шт.

4. Обеззараживание воды в бассейне

Обеззараживание воды в бассейне предусматриваетсякомбинированным методом, основанным на современной обработке воды дозированием хлора с воздействием жестким ультрафиолетовымоблучением. Воздействие УФ облучения на обрабатываемую воду обеспечивает высокий бактерицидный эффект, в том числе и вотношении споровых форм бактерий, вирусов. При этом уменьшается в 2-3 раза расход реагентов, упрощается эксплуатация.

4.1 Установки для обеззараживания воды ультрафиолетовым светом.

Применение УФ облучения для обеззараживания воды плавательных бассейнов позволяет:

— принципиально повысить комфортность условий плавания в бассейне, так как в воду не вводятся химические дезинфиктанты или вводятся в значительно меньших количествах;

— повышает качество воды и надежное ее обеззараживание:

— в проекте использованы установкиVAN ERP-15000 в количестве 2 штук со следующими характеристиками:

— эффективная доза облучения – 16 мДж/см 2

— 1 х 15 м 3 /ч соответственно

— потери напора в установке – 0,3 м.вод.столба

— рабочее давление (не более)3 кг/см 2

— срок службы ламп 15000 часов

— напряжение питания – 220 вольт

Корпус камеры дезинфекции выполнен из пищевой нержавеющей стали, предусмотрена очистка кварцевых чехлов.

Установка монтируется на напорной линии в агрегатной с условием свободного доступа к защитным кожухам кварцевых ламп.

4.2 Выбор реагентов для обработки воды в бассейне

Для эффективной работы фильтров по задержанию загрязнений и для обеззараживания воды в очищаемую воду вводятся химические реагенты. Вид и количество вводимых реагентов зависит от показателей качества воды в бассейне и воды, поступающей не ее подпитку или наполнение.

В проекте предложено использование следующих реагентов:

— в качестве коагулянта – раствор гидрооксида алюминия, жидкое средство для удаления взвесей песочным фильтром – Квикфлок;

— для регулирования PH – раствор биосульфата натрия – pH минус(плюс);

— для обеззараживания – Хлориклар и подобные;

— для препятствия образования водорослей и осветления воды – Альгицид.

Согласно СанПиН 2.1.4.1074-01, СанПиН 2.1.2.1188-03 все перечисленные реагенты разрешены для использования, при очистке питьевой воды.

4.3 Расчет потребности в химических реагентах

Первоначальный запуск бассейна в эксплуатацию

Для ударного хлорирования применяется жидкий хлорин, подаваемый в ручном режиме до достижения концентрации свободного хлора в воде 1,0 – 1,5 мг/л. В соответствии с инструкцией по использованию жидкого хлорина это составляет 15 мл жидкого хлорина на 1м 3 воды, содержащейся в бассейне и переливном баке. То есть необходимое количество жидкого хлорина при первоначальном запуске бассейна составляет:

2. Регулирование уровня pH

Потребность в среде для регулирования уровня pH определяется только опытным путем в зависимости от показателя pH подающей воды. Ориентировочный расход средства для коррекции уровня pH (pH+ или pH-) при первоначальном запуске бассейна не превысит 1 л.

3. Обработка воды альгицидами.

Перед начальным заполнением бассейна дно и стенки обрабатываются 1%-м раствором ольгицида. Согласно инструкции по использованию этого средства, на 1м3 воды, содержащейся в бассейне и переливном баке, тербуется 0,01 л альгицида, то есть его необходимое количество составляет:

Количество используемого дезинфицирующего средства зависит от степени загрязненности воды в бассейне, уровня pH и температуры воды.

Потребность в средствах для регулирования pH можно определить только экспериментальным путем в зависимости от показателя pH водопроводной воды.

3. Предотвращение появления микрорастений.

Для борьбы с микрорастениями применяется жидкий концентрированный альгицид в количестве 2,5 мг на каждый 1м 3 суммарного объема вды, содержащейся в бассейне и переливном баке (согласно инструкции по использованию), то есть расход альгицида составляет:

4.4 Хранение химических реагентов

Для нормальной работы фильтровальной установки необходимо предусмотреть достаточное количество химических реагентов в соответствии с проектом.

Хранение и складирование химических реагентов необходимо выполнять в соответствии со следующими требованиями:

— Химические реагенты должны храниться в оригинальной упаковке в теплых, вентилируемых помещениях при температуре не более +20 о С. Хлорин жидкий необходимо хранить отдельно от других химических реагентов.

— При использовании химических реагентов необходимо строго соблюдать предписания по охране труда.

— До пуска бассейна необходимо проверить, приняты ли все меры по охране труда обслуживающего персонала.

4.5 Качество воды в ванне бассейна

Для контроля за качеством воды в бассейне, на водопроводной сети технологического оборудования установлены пробоотборники (см. схемы). Расположение пробоотборников позволяет проводить контроль качества воды на всех стадиях водоподготовки. Контроль качества проводится в соответствии с разд. 5СанПиН 2.1.4.1188-03 (таблица 1).

Показатели и нормативы качества воды в ванне бассейна

Источник

Публикации

Строительство плавательного водоёма всегда сопровождается прокладкой трубопроводов и установкой закладных элементов, таких как, возвратные форсунки, донные заборники, скиммеры. Если диаметр труб будет меньше необходимого, забор и подача воды будут происходить с повышенными потерями на трение, отчего насос будет испытывать нагрузки, способные вывести его из строя. Если трубы проложены диаметром большим необходимого — неоправданно повышаются расходы на строительство водоёма.

Читайте так же:  Прокладка кабелей в трубах типовой проект л3005

Как правильно подобрать диаметр труб?

Как правильно подобрать диаметр труб?

Возвратные форсунки, донные заборники, скиммеры, каждый имеют отверстие для подключения определенного диаметра, что первоначально определяет диаметр труб. Обычно эти подключения — 1 1/2″ — 2″, к которым подсоединяется труба, диаметром 50 мм. Если несколько закалдных элементов соединяются в одну линию, то общая труба должна быть большего диаметра, чем трубы, подходящие к ней.

На выбор трубы влияет также производительность насоса, которая определяет скорость и количество перекачиваемой воды.

Пропускную способность труб различного диаметра можно определить по следующей таблице:

Пропускная способность труб различного диаметра.

Диаметр, мм Площадь внутр. сечения, мм 2 Пропускная способность в м 3 /час при скорости
Наружный Внутренний 0,5 м/с 0,8 м/с 1,2 м/с 2,0 м/с 2,5 м/с
16 10 79 0,14 0,23 0,34 0,57 0,71
20 15 177 0,32 0,51 0,76 1,27 1,59
25 20 314 0,91 1,36 2,26 2,83
32 25 491 0,88 1,41 2,12 3,54 4,42
40 32 805 1,45 2,32 3,48 5,79 7,24
50 40 1257 2,26 3,62 5,43 9,05 11,31
63 50 1964 3,54 5,66 8,49 14,14 17,68
75 65 3319 5,97 9,56 14,34 23,90 29,87
90 80 5028 9,05 14,48 21,72 36,20 45,25
110 100 7857 14,14 22,63 33,94 56,57 70,71
125 110 9506 17,11 27,38 41,07 68,45 85,56
140 125 12276 22,10 35,35 53,03 88,39 110,48
160 150 17677 31,82 50,91 76,37 127,28 159,09
200 175 24061 43,31 69,29 103,94 173,24 216,54
225 200 31426 56,57 90,51 135,76 226,27 282,83
250 225 39774 71,59 114,55 171,82 286,37 357,96
315 300 70709 127,28 203,64 305,46 509,10 636,38

Для подбора диаметра турбы нам понадобиться знание следующих величин:

Скорость воды в трубе самотёком 0,5 м/с
Скорость воды в трубе коллектора 0,8 м/с
Средняя скорость воды в трубе на входе в насос 1,2 м/с
Средняя скорость воды в трубе на выходе из насоса 2,0 м/с
Максимально возможная скорость воды в трубе 2,5 м/с

Расмотрим технологию подбора труб на конкретных примерах обвязки закладных элементов.

Диаметр трубы для подключения возвратных форсунок.

Например, движение воды в системе обеспечивается насосом EcoX2-16000, максимальной производительностью 16 м 3 /час. Возврат воды в плавательную чашу осуществляется через 4 возвратные форсунки — Дюза для подключения пылесоса (подключение 2″ наружная резьба), каждая ввинчена в стеновой проход с соединением D 50/63. Форсунки расположены попарно на противоположных бортах. Подберем необходимый трубопровод.

Скорость воды на подающей магистрали — 2 м/с. Форсунки делятся на две ветви по две штуки. Производительность на каждую форсунку — 4 м 3 /час, на каждую ветвь — 8 м 3 /час. Подберём диаметр общей трубы, трубы на каждую ветвь и турбы на каждую насадку. Если в таблице нет точного совпадения производительности для конкртеной скорости течения, берем ближайшую. По таблице получается:

  • при производительности 16 м 3 /час (в таблице ближайшее значение 14,14 м 3 /час) — диаметр трубы равен 63 мм;
  • при производительности 8 м 3 /час (в таблице ближайшее значение 9,05 м 3 /час) — диаметр турбы равен 50 мм;
  • при производительности 4 м3/час (в таблице ближайшее значение 3,54 м 3 /час) — диаметр трубы равен 32 мм.

Получается, что на общую подачу подходит труба, диаметром 63 мм, на каждую ветвь — диаметром 50 мм, и на каждую насадку — диаметром 32 мм. Но так, как стеновой проход расчитан на подключение 50 и 63 трубы, трубу, диаметром 32 мм не берём, а соединяем всё трубой 50 мм. К тройнику идет 63-я труба, разводка 50-й трубой.

Диаметр труб для подключения скиммеров.

Тот же насос с производительностью 16 м 3 /час забирает воду через скиммеры. Скиммер в режиме фильтрации забирает обычно от 70 до 90% воды от общего потока, который всасывает насос, остальное приходится на донный слив. В нашем случае 70% производительности — это 11,2 м 3 /час. Подключение скиммер обычно это 1 1/2″ или 2″. Скорость потока на всасывающей линии насоса — 1.2 м/с.

  • для этого случая достаточно трубы, диаметром 63 мм, но идеально — 75 мм;
  • в случае подключения двух скимеров, разветвление ведём 50-ой трубой.

Диаметр труб для подключения донного заборника.

30% от производительности насоса EcoX2 16000 — это 4,8 м 3 /час. По таблице для подключения донного стока достаточно трубы 50 мм. Обычно при подключении донного стока ориентируются на диаметр его присоединения. Стандартный донный сток имеет подсоединение 2″, поэтому выбирают трубу 63 мм.

Расчет диаметра трубы.

Формулу для расчета оптимального диаметра трубопровода получим из формулы для расхода:

Q – расход перекачиваемой воды, м 3 /с
d – диаметр трубопровода, м
v – скорость потока, м/с

Отсюда, расчетная формула для оптимального диаметра трубопровода:

Обратим внимание на то, что в этой формуле расход перекачиваемой воды выражен в м 3 /с. Производительность насосов обычно указывается в м 3 /час. Для того, чтобы перевести м 3 /час в м 3 /с, необходимо значение поделить на 3600.

В качестве примера расчитаем оптимальный диаметр трубопровода для производительности насоса 16 м 3 /час на подающей магистрали.

Переведем производительность в м 3 /с:

Q(м 3 /с)=16 м 3 /час/3600 = 0,0044 м 3 /с

Скорость потока на подающей магистрали равна 2 м/с.

Подставляя значения в формулу получим:

d=((4*0,0044)/(3,14*2)) 1/2 ≈0,053 (м) = 53 (мм)

Получилось, что в данном случае оптимальный внутренний диаметр трубы будет равен 53 мм. Сравниваем с таблицей: для ближайшей производительности 14.14 м 3 /час при скорости протока 2 м/с подходти труба внутренним диаметром 50 мм.

При подборе труб Вы можете воспользоваться одним из описанных выше способов, мы подтвердили расчетами их равнозначность.

По материалам сайтов: waterspace com, ence-pumps ru

Источник

Оцените статью
Adblock
detector