Как рассчитать длину дуги из профильной трубы

Формула Пепина для расчёта длины дуги АРКИ

Формула Пепина для расчёта длины дуги АРКИ.

На днях исполнится мне 54 года. На очереди 54 статья по счётчику «Прозы». В свёртке число 54 даёт простое число 9 – точно такое же число получается при свёртке моего полного настоящего ФИО. Пришла идея «отметить» такое совпадение чисел интересной статьёй. Решил опубликовать мою формулу для расчета длины дуги арки. (Первую арку я изготовил, как ни странно, тоже 9 лет назад.)
Кому это нужно?
Это нужно таким же, как я людям, которые при изготовлении металлоизделий: арочных козырьков, беседок, теплиц и разного рода крыш — сталкиваются с необходимостью расчетов заготовок для гнутья дуг, скажем из профильной трубы разного размера.
Арки из металлопрофиля изготавливаются прокатыванием металла в трёхвалковых вальцах. За счёт многократного прокатывания «туда-обратно» прямая заготовка металла приобретает форму части дуги окружности. Дуга получается, конечно, неточной геометрической копией части окружности. Но вполне достаточным приближением к окружности. Точность зависит от нескольких факторов: от однородности трубы, от степени износа валов вальцов, от расстояния между валами вальцов и от количества проходов – количества раз прокатывания « туда-обратно». Ну, и конечно от искусства и навыков изготовителя.
Но моя идея состоит в том, что если знать длину заготовки металла для конкретной дуги, то при прокатывании заготовки нужно только замерять расстояние между концами заготовки. И когда при изготовлении дуги расстояние между концами заготовки совпадёт с размером основания дуги (прямой, ограничивающей сегмент дуги снизу), то дуга обретает заданные размеры, она готова.
Но как рассчитать длину дуги, когда обычно для козырька или беседки задаются величина основания сегмента дуги и высоте дуги? Хорошо, если уже есть готовый чертёж, который нарисован архитектором, дизайнером или рекламщиком. Там хотя бы есть радиус дуги. И тогда можно на подходящей поверхности начертить часть окружности с таким радиусом. При изготовлении первых дуг так приходилось делать: чертить дугу на земле или на полу. И замерять длину заготовки для дуги, прикладывая к нарисованной дуге рулетку. Потом отрезать заготовку такой длины и прокатывать до совпадения с размером основания сегмента дуги.
Глядя на то, как красиво вырисовываются дуги в графических редакторах на компьютере, мне всё время думалось, что должна быть такая формула, по которой можно высчитать длину дуги, зная только размеры основания и высоты дуги. Перекопав доступную литературу по математике и по строительству, я не смог найти такую формулу. НО думаю, что, наверное, она где-то есть. Поэтому решил попробовать самому вывести эту формулу. Благо дети учились в старших классах школы и были учебники по геометрии. И… Вот, с помощью учебника геометрии 10 или 11 класса, точно уже не помню, мне удалось вывести такую формулу. Само доказательство, даже уже приготовленное в виде статьи ещё году в 2005-ом, сгинуло вместе со всей информацией, когда «сдох» очередной жёсткий диск компьютера, но сам способ вычисления длины дуги сегмента остался в виде алгоритма записанного в рабочей тетради, благодаря тому, что я этим алгоритмом постоянно пользуюсь.
Вот этот метод вычисления длины дуги по основанию и высоте дуги и свою формулу я предлагаю всем заинтересованным людям.
Посмотрим на рисунок. Допустим нам нужно найти длину верхней дуги изображённой арки. Рисуем на этой арке прямоугольный треугольник. Одним катетом является высота арки – это катет b (катет противолежащий углу альфа). Он же является частью радиуса. Второй катет – a (катет прилежащий к углу альфа), является половиной основания сегмента арки.
Исходя из величин катетов этого треугольника, мы можем найти длину дуги арки (сегмента) по формуле (3) , которую я нескромно назвал формулой Пепина. (3)
Как видим, для получения величины длины дуги нам нужно знать угол альфа. Величину этого угла мы можем найти через отношение известных нам размеров катетов, то есть через тангенс угла альфа. Для этого мы согласно формуле (1) поделим величину катета b на величину катета a.
Сократив (округлив) полученное значения тангенса до тысячной мы по сокращённой таблице тангенсов Брадиса, приведённой на рисунке, находим значение угла альфа. В колонках tg ; приведена только дробная часть тангенса (для простоты отброшено 0 целых). Как показывает мой опыт, что для удовлетворительной точности изготовления дуги достаточно знать величину градуса с десятой частью угла. Но у нас таблица только с целыми значениями градусов. Если привести с десятыми, то величина таблицы увеличиться тоже в 10 раз. Мне показалось, что тогда долго искать придётся. Желающие, конечно, могут взять полную таблицу тангенсов Брадиса и пользоваться ей. Я поступаю, так нахожу десятую часть градуса с помощью прикидки «в уме». Между целыми градусами разница от 18 до 34 тысячных градуса. Разделив эту разницу на 10, я получаю значение тангенса для десятой доли угла альфа. И уже, прикинув, сколько не хватает или лишку до ближайшего целого градуса, я нахожу десятичное значение градуса угла альфа. Кто-то, может быть, построит себе таблицу с точностью до десятой доли градуса.

Далее нам нужно рассчитать величину радиуса дуги R. Для этого выведена формула (2)

Далее, значения угла альфа и радиуса подставляем в формулу Пепина (3) и получаем длину дуги. Потом, режем заготовку металла такой длины и прокатываем до тех пор, пока расстояние между концами заготовке не станет равным величине основания дуги.
Прежде чем рассмотреть конкретный пример, напомню, что если у вас дуга равна точно полуокружности, то вы можете воспользоваться классической формулой длины окружности которая равна Пи R (полуокружность).
Рассмотрим пример. Пусть у нас высота арки 87 сантиметров , а ширина (величина основания сегмента 256 сантиметров ( 2 метра 56 сантиметров)

Шаг 1. Формула (1)
Ищем тангенс угла альфа. Для этого поделим 87 сантиметров на половину основания, то есть на 128 сантиметров. Получаем 0,6796875. Округляя до тысячной – получаем 0, 680. Это значение попадает между 34 и 35 градусами. Между ними разница в 25 «единиц». Значит одной десятой градуса соответствует 2, 5 «единицы». Между значением 34 градуса = 0, 675 и полученными 0, 680 всего пять «единиц». 5 «единиц» поделим на 2, 5 и получаем, что к 34 градусам нужно добавить 2 десятых градуса. Значит, искомая величина угла альфа равна 34, 2 градуса.

Шаг 2. (Формула (2)
Вычисляем значение радиуса. Катет b = 0.87 метра, В квадрате это будет 0,7569. Катет a = 1.28 метра, следовательно, в квадрате это будет =1, 6384. Сумма квадратов катетов = 2,3953. Теперь это число поделим на удвоенный катет b , что соответствует 1.74 метра. Получаем в результате значения радиуса равное 1.3766.. метра. Нас устроит такое значение, и даже значение 1,38 метра.
Шаг 3 Формула (3)
Подставляем полученные значения в формулу Пепина.
Угол 34,2 градуса помножаем на радиус 1.38 метра и помножаем на коэффициент 0.07 (семь сотых) и получаем величину длины дуги = 3, 30372… Для практических целей берём заготовку длиной 3 метра 30 сантиметров.
Практически у каждых вальцов дуга не прокатывает самые концы дуги из-за того, что между валами вальцов есть расстояние. У меня на небольших вальцах это непрокатываемое расстояние всего по семь сантиметров с каждого конца. На качество изделия эти прямые части не влияют. Поэтому я беру заготовки по рассчитанной по формуле (3) величине. Тем, кто хочет иметь более полное соответствие дуги геометрии окружности, или у кого большие не прокатываемые концы, то для этого следует к рассчитанной длине дуги прибавить удвоенное расстояние не прокатываемого конца, и замерять величину основания с учетом (вычетом) этого удлинения заготовки.
Всем успехов в работе и построение арок, которые находят всё большее и большее применение в нашей жизни!
Жжуков Иван. 20 октября 2012 года. г. Орёл.

Читайте так же:  Шаблон для трубы excel

Дня через два опубликую эту статью на сайте Гайдпарк, там она будет иметь более удобный для чтения вид.

Источник

Холодная гибка труб. Глубина прогиба ведущим валом

Калькулятор рассчитывает глубину прогиба профиля трубогибом или гибочным станком для получения заданных параметров.

Статья написана в ответ на запрос пользователя, который хотел вычислять глубину прогиба профиля ведущим валом, для получения изогнутой трубы с заданными параметрами.
До запроса я даже и не знал, что есть специальные машины для холодной гибки труб. Причем бывают как и промышленные гибочные станки, так и ручные гидравлические трубогибы.

Все они действуют по одному принципу, который можно понять, посмотрев на картинку.

Профиль (труба) укладывается между валиками, затем центральный валик с усилием прогибает профиль, и дальше оставшийся кусок прокатывается через станок.

С моей дилетантской точки зрения, процесс выглядит примерно так

Собственно, интересует вопрос — насколько надо прогнуть трубу, то есть опустить ведущий вал, чтобы после прокатки всего отрезка профиля получить заданный изгиб?
Изгиб трубы, очевидно, задается радиусом. Но, как показал запрос пользователя, параметры могут быть заданы не только радиусом, но и длиной и высотой хорды, если надо получить арку. Здесь нам пригодится калькулятор, который по заданной длине (C) и высоте хорды (h) рассчитывает длину требуемого отрезка (L) и радиус окружности (R) — смотри рисунок.

Параметры сегмента по хорде и высоте

Подробности и формулы смотри здесь — Сегмент круга

Идем дальше.
Итак, нам нужно получить глубину прогиба зная радиус, расстояние между ведомыми валиками, радиус валиков и размеры профиля.
Перерисуем совмещенный рисунок, добавив несколько нужных линий, и убрав все ненужные.

Точка B — центр нашей окружности. Обратите внимание, что расчет идет по внешнему по отношению к изгибу краю профиля. Поскольку радиус по высоте и ширине хорды скорее всего будет рассчитываться по оси профиля, к полученному радиусу надо прибавить радиус профиля так, чтобы получить радиус внешнего края профиля.

Дальше в ход идет геометрия.
Из расстояния AC и расстояния AB находим угол ABD.

Источник

Расчет арочного навеса из профильной трубы

Мало кто перед строительством небольших построек на участке делает все необходимые расчеты и, тем более, заказывает проект. Обычно просто берутся стандартные решения, надежности которых хватает с большим запасом. И это более чем рационально, когда речь идет о том же заборе из профнастила или небольшом хозблоке. Но расчет арочного навеса лучше сделать: все же, под кровлей постройки будут долго находиться люди или стоять автомобиль. Поэтому вы должны быть уверены в том, что крыша гарантировано выдержит даже сильные снегопады. А для этого нужно знать нагрузки.

Расчет снеговой и ветровой нагрузки на арочный навес

По правилам, чтобы рассчитать арочный навес, нужно не только сделать расчет нагрузки на кровлю и подобрать под нее марку профлиста или поликарбоната, но и посчитать стальной каркас навеса по СП 16.13330.2017 «Стальные Конструкции». На практике этого обычно не делают, поскольку стандартные опоры из круглой или профильной трубы 80×80 мм или 100×100 мм и профили 40×40 мм для каркаса самой арки выдерживают намного большую нагрузку, чем необходимо. Во всяком случае, для навесов во дворе частного дома в южных и центральных регионах. Любые конструкции для северных территорий, а также большие навесы нужно рассчитывать по всем правилам, поскольку типовые решения для них не подходят.

Другое дело — снеговая и ветровая нагрузка. Тем более что такой расчет арки навеса при простой сводчатой кровле несложен. Эти нагрузки считаются по СП 20.13330.2016 «Нагрузки и воздействия», а если точнее — по разделам 10 и 11 этого норматива.

Снеговая нагрузка на арочный навес

Снеговая нагрузка считается по формуле:

ce — коэффициент сноса снега с крыш зданий, который для большинства некупольных крыш будет равен 1.

ct — термический коэффициент, который для зданий без повышенных теплопотерь через крышу равен 1.

Sg — нормативное значение веса снегового покрова на 1 м², который зависит от места строительства, кг/м²:

μ — коэффициент, зависящий от формы крыши.

Для арочных кровель коэффициент μ рассчитывается по одной из двух схем:

Первая схема — для арок, в которые можно вписать окружность. Вторая — для стрельчатых арок.

Но не спешите ужасаться. Если вы делаете расчет арочного навеса из поликарбоната или профнастила ради выбора толщины и марки кровельного материала, коэффициент μ нужно просто взять равным 1. Не разбираясь с углами и касательными. Сейчас объясним почему.

Коэффициент μ для круговой арки считается для двух ситуаций:

  • при равномерно распределенном снеговом покрове: μ1=cos(1,5α) по варианту 1;
  • при неравномерно распределенной нагрузке с образованием снеговых мешков: μ2=sin(3α) по варианту 2.

При этом учитывается наибольшая нагрузка.

Коэффициент μ1 вычисляют в каждой точке кровли, выбирая наибольший. Для арочных кровель с круговым сечением (когда в свод можно вписать окружность, даже если крыша будет лишь небольшой ее частью) μ2 вычисляют в точках, где α=30° и α=60°, а также в крайнем сечении покрытия. Порядок расчета стрельчатых арочных крыш отличается, но принцип такой же: вычисляют несколько значений μ и выбирают наибольшее.

Все это важно только в тех случаях, когда речь идет о проектировании зданий, ангаров и других крупных сооружений с арочными кровлями. Ну и для тех, кто делает расчет арочных навесов не только ради выбора марки профнастила, но и для подбора сечения профиля и структуры фермы. Для этого нужно знать нагрузку в каждой точке кровли.

Пример

Покажем, как рассчитать полукруглый навес из профнастила с шириной кровли 4 м, в свод которой можно вписать окружность радиусом 2,5 м. В этом случае точки с α=60° нет, в крайнем сечении этот угол равен 53,13°.

По коэффициенту μ1 все очевидно — наибольшее значение у косинуса при угле, равном , то есть в вершине дуги, где касательная совпадает с осевой линией. В этом случае μ1=cos(1,5×0°)=1. В крайних точках μ1 будет наименьшим и равно μ1=cos(1,5×53,13°)=0,179.

Коэффициент μ2 считаем в двух точках — крайней и при α=30°:

Итого, независимо от метода расчета и радиуса арки, коэффициент μ все равно берем равным 1.

Проще говоря, когда мы делаем расчет арочного навеса для установки его во дворе дома, то приходим к частному случаю, при котором S0=Sg. Нормативный вес снегового покрова по районам приведен в таблице ниже.

Читайте так же:  Лента для разметки труб pipe wrap d184
Нормативные значения веса снегового покрова на 1 м²
Снеговые районы I II III IV V VI VII VIII
Sg, кН/м² 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Примечание

Чтобы перевести кН/м² в кг/м², нужно умножить на коэффициент 101,97. Или просто умножить на 100, если сильная точность расчетов не важна.

Причина выбора наибольшего коэффициента μ, несмотря на то что его значения в разных точках арки отличаются в несколько раз, проста: на кровлю обычно укладывают один и тот же материал, и он должен держать нагрузку в любой точке. Поэтому его подбирают по самой большой нагрузке, даже если она возникает всего в одном месте крыши. А вот когда нужно сделать расчет арки навеса из профтрубы, разница в нагрузке в разных точках кровли приобретает большое значение. От этого зависит толщина стенок и сечение профильных труб, а также конфигурация ферм. В этом случае их тоже можно взять с запасом, и для небольших построек так и делают. Но для промышленных и коммерческих строений, вроде ангаров или складов, такой подход значительно, в 1,5–2 раза увеличивает себестоимость строительства.

Пример

Снеговая нагрузка на полукруглый навес из профнастила, который устанавливают во дворе дома в Подмосковье (III снеговой район), будет равна 1,5×101,97=152,955 кг/м².

Ветровая нагрузка на арочный навес

Ветровую нагрузку рассчитывают по общей формуле:

где w0 — нормативная ветровая нагрузка, зависящая от района строительства, кПа:

Нормативные значения ветрового давления
Ветровые районы Ia I II III IV V VI VII
w0, кПа 0,17 0,23 0,30 0,38 0,48 0,60 0,73 0,85

k(ze) — поправочный коэффициент, учитывающий изменение ветрового давления в зависимости от высоты ze, который берется по таблице:

Значения коэффициента k в зависимости от высоты местности ze
Высота ze, м Коэффициент k для типов местности
А В С
≤ 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2

Примечание

  • Местность типа А: открытые побережья морей, озер, водохранилищ, сельские местности при высоте построек менее 10 м, пустыни, степи, лесостепи, тундра.
  • Местность типа В: город, лес и другие местности, которые равномерно покрыты препятствиями высотой более 10 м.
  • Местность типа С: плотно застроенные городские районы со зданиями высотой более 25 м.

с — аэродинамический коэффициент.

Если с первыми двумя значениями все понятно, то с аэродинамическим коэффициентом возникают проблемы, поскольку в своде правил нет схемы для навеса с арочной кровлей. Поэтому ветровую нагрузку для таких конструкций считают, как для зданий с арочной кровлей. Для них аэродинамический коэффициент с будет равен:

Пример

Продолжим предыдущий расчет арочного навеса. Ширина l навеса равна 4 м, высота опор h12 м, высота арки f1 м. Для определения се1 и се2 по графику посчитаем коэффициенты: f/l=1/4=0,25, h1/l=2/4=0,5. Следовательно, се1 будет равен либо −0,8, либо примерно 0,13 (нагрузку считают с каждым коэффициентом и выбирают наибольшую), а се20,95. Рассчитаем аэродинамический коэффициент:

Больший коэффициент се2 берем для расчетов. Поскольку Подмосковье относится к первому ветровому району, w0=0,23 кПа. Так как навес меньше 5 м высотой, а пригород относится к территории типа В, k(ze) равен 0,5.

Как видно из примера, для арочных навесов, которые ставятся на неветренных территориях, расчетом ветровой нагрузки часто можно пренебречь.

Суммарная нагрузка на кровлю арочного навеса будет равна 152,955+0,0782≈153 кг/м². Профнастил С21 выдерживает до 195 кг/м² при схеме опирания 4 и шаге 1,8 м, поэтому для перекрытия навеса оптимально выбрать эту марку профлиста.

Расчет количества материала для арочного навеса

Посчитать количество кровельного материала для арочного навеса сложнее, чем для обычного укрытия с односкатной или двускатной крышей. Для таких кровель расчет материала начинают с вычисления площади ската. Для арочной крыши это не первый этап — сначала ее нужно «развернуть» на плоскость, чтобы получился прямоугольник, площадь которого нас и интересует. Одна сторона этого прямоугольника известна — это длина навеса. Вторая сторона — это длина дуги арки, и ее нужно рассчитать.

Если арочная кровля — часть окружности, то рассчитать дугу арки для навеса можно по формуле:

Обычно угол сегмента и радиус окружности неизвестен. Зато можно напрямую измерить высоту арки h и хордуl — ширину навеса. Тогда:

Сложновато выглядит, не правда ли? Особенно пугающе смотрится арксинус, с которым и ученики выпускных классов не так часто встречаются. Поэтому мы решили облегчить вам задачу и сделали онлайн-калькулятор, который за вас рассчитает длину дуги арки для навеса:

Онлайн-калькулятор для расчета длины дуги арочного навеса

Просто введите высоту арки и ее ширину и нажмите на кнопку «Рассчитать», а остальное программа сделает за вас. Калькулятор считает только простые арки, высота которых меньше или равна половине ширины. Если у вас арочный навес с вертикальными участками по бокам, то считайте длину самой арки и длину этих стенок отдельно.

Теперь наконец, о непосредственном расчете материала на арочный навес из металлопрофиля. Рассчитанную длину дуги нужно умножить на длину навеса. Так мы получим площадь поверхности навеса, которую и будем застилать кровельным материалом. Дальше ее просто нужно разделить на полезную площадь листа выбранной марки профнастила. В отличие от полной площади, которую получают простым перемножением ширины листа на его длину, для расчета полезной площади используют размеры с учетом боковых нахлестов. Но если будут еще и поперечные нахлесты, то количество материала нужно будет увеличить на 15%.

Пример

Продолжим расчеты. Ширина нашего навеса — 4 м, высота арки — 1 м, следовательно, длина дуги равна 4,64 м. При длине навеса 6 м площадь поверхности кровли будет равна 4,64×6=27,84 м. Допустим, для перекрытия навеса будет использоваться профнастил С21. Длину листа берем с небольшим запасом — 4,7 м. Поскольку полезная ширина выбранной марки профнастила ровно 1 м, для навеса понадобится 6 таких листов.

Количество профильных труб для навеса зависит от проекта. Как правило, это:

  • 4–6 опорных труб 80×80 или 100×100 мм;
  • профиль 40×40 мм для дуг по одной штуке на каждый метр длины навеса;
  • профиль 60×30 мм или 40×40 мм для раскосов и боковых ферм.

Советуем считать профильные трубы в штуках, а не в метрах — так меньше вероятность ошибиться. Кроме того, при заказе готового комплекта профилей, вам не нужно будет тратить время на разметку труб и самостоятельную резку. Нужно будет просто собрать каркас навеса как конструктор.

Что в итоге

Расчет арочных навесов редко делают полностью — фермы считают только для ответственных или крупных объектов, но никак не для небольших построек во дворах частных домов. Для таких строений достаточно посчитать снеговую и ветровую нагрузки. Это нужно, чтобы выбрать подходящую марку профлиста или вид сотового/профилированного поликарбоната.

Кроме того, делают расчет материалов для арочных навесов из металлопрофиля. Он не так прост, как для обычных односкатных и двускатных кровель, поскольку скругленную поверхность нужно «развернуть» на плоскость. Но это не невыполнимая задача: нужно просто подставить значения в формулу или воспользоваться нашим онлайн-калькулятором.

Полезная статья? Сохраните ее в соцсетях, чтобы не потерять ссылку!

Источник

Оцените статью
Adblock
detector